
ADVICE FOR STUDENTS FOR LEARNING PROOFS 

 

You should periodically reread this essay as the course progresses since 

many of the comments refer to situations that will arise from time to time. 

Keep it on hand when you do home work.  

Proofs are constructed by utilizing definitions, theorems and facts. So, to 

be able to do proofs you must have the relevant definitions, theorems and 

facts memorized. When a new topic is first introduced proofs typically 

use only definitions and basic math ideas such as properties of numbers. 

Once you have learned some theorems about a topic you can use them to 

proofs more theorems.  

To learn how to do proofs pick out several statements with easy proofs 

that are given in the textbook. Write down the statements but not the 

proofs. Then see if you can prove them. Students often try to prove a 

statement without using the entire hypothesis. Keep in mind that you 

MUST use the hypothesis. If you cannot prove the statement, look at the 

first line of the proof in the text. That might be enough to get you started. 

If it is not, then look at the next line and so on. Practice proving the 

statements you selected until you can do the proofs without looking at the 

text. One you have mastered your original selections pick a few new ones 

and practice those. There is a direct relationship between your 

understanding of the subject and your ability to do proofs. Proofs test 

your understanding. They also test your creativity.  

HOW TO GET STARTED  

Begin a proof by rewriting what you are given and what you are asked to 

prove in a more convenient form. Often this involves converting word to 

symbols and utilizing the definitions of the terms used in the statements. 

An example is "Prove that the product of two nonzero real numbers is 

nonzero." This converts to "If a and b are nonzero real numbers, prove 

that ab ≠ 0." Begin the proof with "Assume that a ≠ 0 and b ≠ 0. Prove 

that ab ≠ 0." (We provide a proof of this statement in the section on proof 

by contradiction.) It is important to begin by rewriting both the 

assumptions and the conclusions since this emphasizes that the former is 

what you have to work with and the latter is your goal.  

Examples of converting words to symbols are: 

n is an even integer converts to n = 2t for some t 

n is an odd integer converts to n = 2t + 1 for some t  



n is a rational number converts to n = a/b where a and b are integers  

n is a divisor of m converts to m = nt for some integer t  

n is a square converts to n = t
2
 for some integer t.  

DIRECT PROOF  

In a direct proof you are given one or more conditions and are asked to 

prove some conclusion. For proofs in abstract algebra you are permitted 

to use the given conditions as well as axioms, definitions and standard 

facts about real numbers, complex numbers, high school algebra, and 

linear algebra without elaboration. In a direct proof of a statement of the 

form A implies B, you start your proof by assuming that A is true and go 

through a series of steps ending with B.  

As an example, consider the statement "The sum of two rational numbers 

is rational." To prove this we use the definition of a rational number and 

convert the words to expressions by recasting the statement as "If a, b, c 

and d are integers and b ≠ 0 and d ≠ 0 are not 0, then a/b + c/d has the 

form m/n where m and n are integers." To prove this statement we 

observe that since a/b + c/d = (ad + bc)/bd and ad + bc is an integer and 

bd ≠ 0, the proof is complete.  

PROOF BY CONTRADICTION  

Proof by contradiction is a natural way to proceed when negating the 

conclusion gives you something concrete to manipulate. To prove the 

statement "A implies B" by contradiction, begin by assuming that A is 

true and B is not true and end by arriving at some contradiction (possibly 

contradicting statement A). For example, a statement such as "Prove that 

log23 is irrational" is an obvious choice for proof by contradiction since 

assuming that log23 is rational allows you to write log23 = m/n where m 

and n are integers. From this we have 3 = 2
m/n

 and therefore 3
n
 = 2

m
. 

Since the right side is even and the left side is odd we have contradicted a 

basic fact about integers. If you argue by contradiction, don't end it by 

saying "a contradiction." You must indicate what you are contradicting 

(usually this will be the hypothesis, a theorem or a fact).  

 

Here is an example where we contradict the original assumption. To 

prove the statement "The sum of a rational number and an irrational 

number is irrational" by contradiction, we let a be a rational number and 

b an irrational number and assume that a + b is rational. But then (a + b) 

+ (-a) = b is rational. This is a contradiction to the assumption that b is 

irrational.  



Over 2000 years ago Euclid proved that are infinitely many primes by 

assuming that there are only finitely many. By doing so he was able to 

take their product to arrive at a contradiction.  

PROVING AN "OR" STATEMENT  

When you are asked to prove an "or" statement such as "... prove 

statement A or statement B" you begin by assuming one of A or B is false 

and use that to prove the other statement is true. It does not matter which 

of the statements A or B you assume to be false. If you assume A is false 

and are not able to prove B is true, then assume B is false and try to prove 

that A is true. Proving one of these two possibilities is a complete proof. 

There is no need to do both. 

 

Another way to prove an "A or B" statement is to assume both statement 

A and statement B are false and obtain a contradiction. The statement "If 

a and b are nonzero real numbers, prove that ab is nonzero" is a perfect 

candidate for proof by contradiction since the assumption that ab = 0 

allows you to take advantage of a special property of 0. To prove ab ≠ 0 

we assume that a ≠ 0, b ≠ 0 and ab = 0. Since b ≠ 0, we know b
-1

 exists. 

Then a = a(bb
-1

) = (ab)b
-1

 = 0, which contradicts the assumption that a ≠ 

0.  

Here is another example. "If m and n are integers and mn is even, prove 

that m or n is even." To prove this we assume that mn is even and m and n 

are odd. Then we may write m = 2s + 1 and n = 2t + 1 for some integers 

s and t. Then mn = (2s + 1)(2t + 1)= 4st + 2s + 2t + 1 = 2(2st + s + t) + 

1, which is odd. Since this contradicts the assumption that mn is even, the 

proof is complete.  

PROOF BY CASE ANALYSIS  

A common way to construct a direct proof is to examine all possible 

cases. Consider the statement "If the product of two integers is odd, then 

both of them are odd." We begin by converting words to symbols by 

denoting the two integers by m and n and consider four cases  

CASE 1. m and n are even. In this case we can write m = 2s and n = 2t 

for some s and t. Then mn = 2s2t = 2(2st) and mn is even.  

CASE 2. m and n are odd. In this case we can write m = 2s + 1 and n = 2t 

+1 for some s and t. Then mn = (2s + 1)(2t + 1) = 4st + 2s + 2t + 1 = 

2(2st + t + s) + 1 and mn is odd.  

CASE 3. m is even and n is odd. In this case we can write m = 2s and n = 

2t + 1 for some s and t. Then mn = 2s(2t + 1) = 4st + 2s = 2(2st + s) and 

mn is even.  



CASE 4. m is odd and n is even. This case is the same as Case 3 since m 

and n are interchangeable. 

To complete the proof we observe that the only case that does not yield a 

even product is when both m and n are odd.  

PROOF BY EXPERIMENT  

Although you cannot generally prove statements by experiment, many 

proofs can be done with the help of experimenting. One typically looks at 

simple cases to gain insight and this insight results in a proof.  

 

Consider the statement "Every odd integer is the sum of two consecutive 

integers." Trying a few small cases we have 

3 = 1 + 2 

5 = 2 + 3 

7 = 3 + 4. 

It seems that a general pattern is 2n + 1 = n + (n+1) and indeed this gives 

us a proof.  

 

Here is another example. Consider the statement "Prove that every 

positive odd integer is the difference of two squares." Since the statement 

of the problem tells us that we must look at differences of two squares, 

we begin by listing the small squares and taking some differences to see 

if we can detect a pattern. The first six squares are: 

0
2
 =0  

1
2
 = 1 

2
2
 = 4  

3
2
 = 9  

4
2
 = 16  

5
2
 = 25. 

Taking differences of successive squares we have: 

1
2
 - 0

2
 = 1 

2
2
 - 1

2
 = 3  

3
2
 - 2

2
 = 5 

4
2
 - 3

2
 = 7  

5
2
 - 4

2
 = 9.  

Although that it appears that by taking the difference of successive 

squares we will obtain every odd positive integer we still must prove that 

this is the case. Observing that (n + 1)
2
 - n

2
 =  

n
2
 + 2n + 1 - n

2
 = 2n + 1 is the entire proof. Moreover, this proof is valid 

for all odd integers, not just the positive odds.  



IF AND ONLY IF PROOFS  

 

When trying to prove an "if and only if" statement it is highly 

recommended not use an "if and only if" argument. They are tricky to get 

correct for beginners. Instead, if you are asked to prove that A is true if 

and only if B is true, first assume that A is true and use this assumption to 

prove B is true. Then begin all over by assuming that B is true and use 

that to prove A is true. This approach requires two independent proofs.  

PROVING TWO SETS ARE EQUAL  

 

Whenever you are asked to prove a set A is equal to a set B, proceed by 

assuming an element x belongs to A and use the defining property of A to 

show that x belongs to B. Then assume some element x belongs to B and 

use the defining property of B to prove that x belongs to A.  

 

Here is an example. To prove that {(n +1)
2
 - n

2
| where n is an integer} is 

the set of all odd integers we let (n + 1)
2
 - n

2
 be any member of the left 

side. Since (n + 1)
2
 -n

2
 = n

2
 + 2n +1 - n

2
 = 2n + 1 we have shown that (n 

+ 1)
2
 - n

2
 is a member of the right side. Now let k be any member of the 

right side. Since k is odd it can be written in the form 2n + 1 for some 

integer n and since 2n + 1 = (n +1)
2
 -n

2
 we have shown that k is a 

member of the left side.  

DISPROVING  

 

Although "proof by example" is not legitimate, you can disprove 

statements by way of a single example. Consider the statement "The sum 

of two irrational numbers is irrational." To disprove this statement we 

simply observe that √2 and -√2 are irrational but √2 + -√2 = 0 is rational.  

PROVING UNIQUENESS  

 

To prove an object is unique assume that a and b are two objects with the 

desired property and show this property together with other known 

information to show that a = b. To illustrate, consider the statement "For 

any real number r the equation x
3
 = r has a unique real number solution." 

To prove this statement assume that a and b are both solutions of x
3
 = r 

and use algebra and properties of real numbers to prove that a = b.  

LOOK BACK  

 



After you complete a proof, look back to see if you used all the 

hypotheses. Also, be sure that you have provided reasons for each step.  

NEGATING STATEMENTS  

 

Be careful with negations. The negation of "for all" is "there is at least 

one" and vice versa. For example, the negation of the statement "For 

every real number x, x 
2
 > 0 " is "There exist at least one real number x 

for which x
2
 ≤ 0." Conversely, the negation of "There exist at least one 

real number x for which x
2
 ≤ 0" is "For every real number x, x 

2
 > 0 ." 

These are easy to remember by thinking of a statement such as "Everyone 

passed the exam." The negation is "At least one person failed the exam." 

The negation of "At least one person failed the exam" is "Everyone 

passed the exam."  

PROVING A FUNCTION IS ONTO  

 

Proving a function is "onto" causes confusion among many students. If 

you wish to prove that some function f from A to B is onto, let b denote 

any element of B. You must find some x in A such that f(x) = b (think of 

b as given and x as an unknown). To do this replace f(x) by the actual 

formula for f(x) and then solve for x in terms of b. You must check to see 

whether the solution you obtained is in set A. Here is an example. Say 

you are asked to prove that f(x) = x
2
 from the positive reals to the positive 

reals is onto. We let b be any positive real. Then we must solve the 

equation x
2
 = b for x. Noting that x = √ b is a positive real solution proves 

that f is onto. In contrast, if we have the same function from the positive 

rationals to the positive rationals the function is not onto since there is no 

rational solution of the equation x
2
 = 2.  

 


